Earth's global energy budget

An update is provided on the Earth's global annual mean energy budget in the light of new observations and analyses. In 1997, Kiehl and Trenberth provided a review of past estimates and performed a number of radiative computations to better establish the role of clouds and various greenhouse gases in the overall radiative energy flows, with top-of-atmosphere (TOA) values constrained by Earth Radiation Budget Experiment values from 1985 to 1989, when the TOA values were approximately in balance. The Clouds and the Earth's Radiant Energy System (CERES) measurements from March 2000 to May 2004 are used at TOA but adjusted to an estimated imbalance from the enhanced greenhouse effect of 0.9 W m⁻². Revised estimates of surface turbulent fluxes are made based on various sources. The partitioning of solar radiation in the atmosphere is based in part on the International Satellite Cloud Climatology Project (ISCCP) FD computations that utilize the global ISCCP cloud data every 3 h, and also accounts for increased atmospheric absorption by water vapor and aerosols. Surface upward longwave radiation is adjusted to account for spatial and temporal variability. A lack of closure in the energy balance at the surface is accommodated by making modest changes to surface fluxes, with the downward longwave radiation as the main residual to ensure a balance. Values are also presented for the land and ocean domains that include a net transport of energy from ocean to land of 2.2 petawatts (PW) of which 3.2 PW is from moisture (latent energy) transport, while net dry static energy transport is from land to ocean. Evaluations of atmospheric re-analyses reveal substantial biases.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Trenberth, Kevin
Fasullo, John
Kiehl, Jeffrey
Publisher UCAR/NCAR - Library
Publication Date 2009-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:57:48.031715
Metadata Record Identifier edu.ucar.opensky::articles:15537
Metadata Language eng; USA
Suggested Citation Trenberth, Kevin, Fasullo, John, Kiehl, Jeffrey. (2009). Earth's global energy budget. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d71837jd. Accessed 21 June 2025.

Harvest Source