Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves

A large-eddy simulation (LES) model, which adopts wave-averaged equations with vortex force, is used to investigate Langmuir turbulence and ocean boundary layer (OBL) dynamics in high-wind hurricane conditions. The temporally evolving spatially asymmetric wind and wave Stokes drift velocity imposed in the LES are generated by a spectral wave prediction model adapted to Hurricane Frances traveling at a speed of 5.5 m s(-1). The potency of Langmuir turbulence depends on the turbulent Langmuir number, the wind-Stokes drift alignment, and the depth scale of the Stokes profile D-s relative to the OBL depth h. At the time of maximum winds, large-scale vigorous coherent cells develop on the right-hand side of the storm under the inertially rotating winds; the Stokes drift velocity is well tuned to the surface winds. Much weaker cells develop on the left-hand side of the storm, partly because of reduced Stokes production. With misaligned winds and waves the vertical momentum fluxes can be counter to the gradient of Stokes drift, and the cell orientation tracks the direction of the mean Lagrangian shear. The entrainment flux is increased by 20% and the sea surface temperature is 0.25 K cooler on the right-hand side of the storm in the presence of Langmuir turbulence. Wave effects impact entrainment when the ratio D-s/vertical bar h vertical bar > 0.75. Because of wind-wave asymmetry Langmuir cells add quantitatively to the left-right asymmetry already understood for hurricanes due to resonance. And the transient evolution of the OBL cannot be understood simply in terms of equilibrium snapshots.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sullivan, Peter
Romero, Leonel
McWilliams, James
Melville, W.
Publisher UCAR/NCAR - Library
Publication Date 2012-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:04:23.621784
Metadata Record Identifier edu.ucar.opensky::articles:13056
Metadata Language eng; USA
Suggested Citation Sullivan, Peter, Romero, Leonel, McWilliams, James, Melville, W.. (2012). Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7sb46ms. Accessed 28 June 2025.

Harvest Source