On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere

During geomagnetic storms Joule heating dissipation is the dominant form of magnetospheric energy input that is responsible for many chemical and dynamical variations in the thermosphere. One such thermospheric variation is the dramatic increase of thermospheric temperature and nitric oxide (NO) density and thus radiative emission by NO. This paper gives for the first time a quantitative assessment of the relationship between global Joule heating power and global NO radiative cooling power. It is found that, when averaged over a time interval of 24 h along with a time lag of 10 h, global Joule heating power is closely correlated with global NO cooling power. On average, the increased energy release through NO 5.3 μm infrared emission accounts for about 80% of Joule heating energy input under disturbed conditions. The paper also presents a first attempt to parameterize global NO power using the Kp and F10.7 indices. Under nonstorm conditions the best correlation is found when the daily global NO power lags behind the solar flux input by 1 day. The predicted NO power based on this parameterization scheme reproduces many features in the observed global NO power by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument over the 7 year period from 2002 to 2008. The predicted global NO power correlates well with the SABER measurements, with a correlation coefficient of 0.89.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lu, Gang
Mlynczak, M.
Hunt, L.
Woods, T.
Roble, Raymond G.
Publisher UCAR/NCAR - Library
Publication Date 2010-05-11T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:26:02.722408
Metadata Record Identifier edu.ucar.opensky::articles:10405
Metadata Language eng; USA
Suggested Citation Lu, Gang, Mlynczak, M., Hunt, L., Woods, T., Roble, Raymond G.. (2010). On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7z60pjb. Accessed 16 August 2025.

Harvest Source