Sensitivity of axisymmetric tropical cyclone spinup time to dry air aloft

The sensitivity of tropical cyclone spinup time to the initial entropy deficit of the troposphere is examined in an axisymmetric hurricane model. Larger initial entropy deficits correspond to less moisture above the initial lifting condensation level of a subcloud-layer parcel. The spinup time is quantified in terms of thresholds of integrated horizontal kinetic energy within a radius of 300 km and below a height of 1.5 km. The spinup time increases sublinearly with increasing entropy deficit, indicating the greatest sensitivity lies with initial moisture profiles closer to saturation. As the moisture profile approaches saturation, there is a large increase in the low-level, area-averaged, vertical mass flux over the spinup period because of the predominance of deep convection. Higher entropy deficit experiments have a greater amount of cumulus congestus and reduced vertical mass flux over a longer duration. Consequently, the secondary circulation takes longer to build upward, and the radial influx of angular momentum is reduced. There is also a reduction in the conversion of potential available enthalpy to horizontal kinetic energy, as a result of reduced flow down the radial pressure gradient early in the spinup period. Later in the spinup period, the low-level vortex spins up relatively quickly near the nascent radius of maximum wind in the high-entropy deficit experiments, whereas the low-level vortex spins up over a wider area in the low-entropy deficit experiments.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Tang, Brian H.
Rios-Berrios, Rosimar
Alland, Joshua J.
Berman, Jeremy D.
Corbosiero, Kristen L.
Publisher UCAR/NCAR - Library
Publication Date 2016-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:34:59.400067
Metadata Record Identifier edu.ucar.opensky::articles:22983
Metadata Language eng; USA
Suggested Citation Tang, Brian H., Rios-Berrios, Rosimar, Alland, Joshua J., Berman, Jeremy D., Corbosiero, Kristen L.. (2016). Sensitivity of axisymmetric tropical cyclone spinup time to dry air aloft. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7zk5kvt. Accessed 18 July 2025.

Harvest Source