On the development of GFDL's decadal prediction system: Initialization approaches and retrospective forecast assessment

Using GFDL's new coupled model SPEAR, we have developed a decadal coupled reanalysis/initialization system (DCIS) that does not use subsurface ocean observations. In DCIS, the winds and temperature in the atmosphere, along with sea surface temperature (SST), are restored to observations. Under this approach the ocean component of the coupled model experiences a sequence of surface heat and momentum fluxes that are similar to observations. DCIS offers two initialization approaches, called A1 and A2, which differ only in the atmospheric forcing from observations. In A1, the atmospheric winds/temperature are restored toward the JRA reanalysis; in A2, surface pressure observations are assimilated in the model. Two sets of coupled reanalyses have been completed during 1961-2019 using A1 and A2, and they show very similar multi-decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Two sets of retrospective decadal forecasts were then conducted using initial conditions from the A1 and A2 reanalyses. In comparison with previous prediction system CM2.1, SPEAR-A1/A2 shows comparable skill of predicting the North Atlantic subpolar gyre SST, which is highly correlated with initial values of AMOC at all lead years. SPEAR-A1 significantly outperforms CM2.1 in predicting multi-decadal SST trends in the Southern Ocean (SO). Both A1 and A2 have skillful prediction of Sahel precipitation and the associated ITCZ shift. The prediction skill of SST is generally lower in A2 than A1 especially over SO presumably due to the sparse surface pressure observations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Yang, Xiaosong
Delworth, Thomas L.
Zeng, Fanrong
Zhang, Liping
Cooke, William F.
Harrison, Matthew J.
Rosati, Anthony
Underwood, Seth
Compo, Gilbert P.
McColl, Chesley
Publisher UCAR/NCAR - Library
Publication Date 2021-11-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:16:02.131556
Metadata Record Identifier edu.ucar.opensky::articles:24888
Metadata Language eng; USA
Suggested Citation Yang, Xiaosong, Delworth, Thomas L., Zeng, Fanrong, Zhang, Liping, Cooke, William F., Harrison, Matthew J., Rosati, Anthony, Underwood, Seth, Compo, Gilbert P., McColl, Chesley. (2021). On the development of GFDL's decadal prediction system: Initialization approaches and retrospective forecast assessment. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7v40zpt. Accessed 22 June 2025.

Harvest Source