Upscale versus “up-amplitude” growth of forecast-error spectra

Atmospheric predictability is measured by the average difference (or "error") within an ensemble of forecasts starting from slightly different initial conditions. The spatial scale of the error field is a fundamental quantity; for meteorological applications, the error field typically varies with latitude and longitude and so requires a two-dimensional (2D) spectral analysis. Statistical predictability theory is based on the theory of homogeneous, isotropic turbulence, in which spectra are circularly symmetric in 2D wavenumber space. One takes advantage of this circular symmetry to reduce 2D spectra to one-dimensional (1D) spectra by integrating around a circle in wavenumber polar coordinates. In recent studies it has become common to reduce 2D error spectra to 1D by computing spectra in the zonal direction and then averaging the results over latitude. It is shown here that such 1D error spectra are generically fairly constant across the low wavenumbers as the amplitude of an error spectrum grows with time and therefore the error spectrum is said grow "up-amplitude." In contrast computing 1D error spectra in a manner consistent with statistical predictability theory gives spectra that are peaked at intermediate wavenumbers. In certain cases, this peak wavenumber is decreasing with time as the error at that wavenumber increases and therefore the error spectrum is said to grow "upscale." We show through theory, simple examples, and global predictability experiments that comparisons of model error spectra with the predictions of statistical predictability theory are only justified when using a theory-consistent method to transform a 2D error field to a 1D spectrum.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Rotunno, Richard
Snyder, Chris
Judt, Falko
Publisher UCAR/NCAR - Library
Publication Date 2023-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:41:58.561341
Metadata Record Identifier edu.ucar.opensky::articles:26085
Metadata Language eng; USA
Suggested Citation Rotunno, Richard, Snyder, Chris, Judt, Falko. (2023). Upscale versus “up-amplitude” growth of forecast-error spectra. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7862mct. Accessed 18 July 2025.

Harvest Source