ECMWF IFS CY41r2 High-Resolution Operational Forecasts

ECMWF has implemented a significant resolution upgrade and methodology for high-resolution forecasts (HRES) and ensemble forecasts (ENS) beginning January of 2016. HRES is now performed via a transform grid with a nominal grid point spacing of 9 kilometers (0.08 degrees), and is carried out with IFS (Integrated Forecast System) model cycle CY41r2. Improvements in computational efficiency and effective resolution have been brought about by implementing a triangular cubic octahedral reduced Gaussian grid in which the shortest spatial wavelength is represented by at least four grid points anywhere on the globe, as opposed to the former linear arrangement whereby the shortest wavelength was represented by two grid points, while at the same time retaining the same number of spherical harmonics and triangular truncation. (The term "cubic" is due to the ability of the grid to represent cubic products in the dynamical equations.) In addition, the reduction of grid points along latitude circles as one approaches the poles is achieved using a triangular to octahedral mapping which corresponds to a poleward reduction of four points per latitude circle and an optimization of the total number of grid points and their local mesh resolution. Based on IFS CY41r2, ECMWF has documented superior filtering properties at higher resolution, an improved representation of orography, improved global mass conservation properties, substantial efficiency gains, and more scalable locally compact computations of derivatives and other properties that depend on nearest-neighbor information only. More details may be found in the publications cited below and the documentation tab at the top of the dataset home page (to be added).

NCAR's Data Support Section (DSS) is performing and supplying a grid transformed version of ERA-Interim, in which variables originally represented as spectral coefficients or archived on a reduced Gaussian grid are transformed to a regular 5120 longitude by 2560 latitude N1280 Gaussian grid. In addition, DSS is also computing horizontal winds (u-component, v-component) from spectral vorticity and divergence where these are available.

To Access Resource:

Questions? Email Resource Support Contact:

  • Dave Stepaniak
    davestep@ucar.edu
    UCAR/NCAR - Research Data Archive

Temporal Range

  • Begin:  2016-01-01T00:00:00Z
    End:  2018-08-02T18:00:00Z

Keywords

Resource Type dataset
Temporal Range Begin 2016-01-01T00:00:00Z
Temporal Range End 2018-08-02T18:00:00Z
Temporal Resolution N/A
Bounding Box North Lat 89.946
Bounding Box South Lat -89.946
Bounding Box West Long -180
Bounding Box East Long 180
Spatial Representation grid
Spatial Resolution 0.07 degree
Related Links N/A
Additional Information N/A
Asset Size 68202392 MB
Legal Constraints Data are delivered to NCAR for research and educational purposes only. Data may be distributed by NCAR for use by the UCAR community in North America and for use by the non-UCAR research and educational institutions in the United States (such as NOAA laboratories) for scientific research and educational purposes, provided that they first agree to these Terms of Use. Data may be distributed to registered end users only; no further redistribution is permitted without the written agreement of ECMWF. The ownership and the intellectual property rights on the data remain with ECMWF. ECMWF does not accept any liability whatsoever for any error or omission in the data , or for any direct, indirect or consequential loss or damage arising from its use. Users should reference ECMWF Operational Data in their scientific publications. NCAR will inform ECMWF of any distribution of data to non-UCAR institutions and will refer to ECMWF all requests for ECMWF Operational Data which do not conform to these terms.
Access Constraints Must be a registered user of RDA ECMWF Operational Data. Please update your current RDA user profile by clicking on the "ECMWF Operational Data" terms of acceptance, or create a new RDA user profile if you have not already done so (and click on the "ECMWF Operational Data" terms of acceptance during the registration process).
Software Implementation Language N/A
Resource Support Name Dave Stepaniak
Resource Support Email davestep@ucar.edu
Resource Support Organization UCAR/NCAR - Research Data Archive
Science Support Name N/A
Science Support Email N/A
Science Support Organization N/A
Distributor NCAR Research Data Archive
Metadata Contact Name N/A
Metadata Contact Email rdahelp@ucar.edu
Metadata Contact Organization NCAR Research Data Archive
Author European Centre for Medium-Range Weather Forecasts
Publisher Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
Publication Date 2016-06-20
Digital Object Identifier (DOI) https://doi.org/10.5065/D68050ZV
Alternate Identifier ds113.1
Resource Version N/A
Topic Category climatologyMeteorologyAtmosphere
Progress onGoing
Metadata Date 2018-10-15T15:05:01-07:00
Metadata Record Identifier edu.ucar.rda::ds113.1
Metadata Language eng; USA
Suggested Citation European Centre for Medium-Range Weather Forecasts. (2016). ECMWF IFS CY41r2 High-Resolution Operational Forecasts. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D68050ZV. Accessed 21 October 2018.

Harvest Source