Towards probing Earth’s upper mantle with daily magnetic field variations: Exploring a physics-based parametrization of the source

The electromagnetic (EM) field variations capable of probing the electrical conductivity of the upper mantle and mantle transition zone have a period range between a few hours and 1 day. At these periods, the dominant source of the EM signals is the ionospheric current system, which has a complex spatial and temporal structure. A concept of global-to-local (G2L) transfer functions can handle spatially complex source by relating global source expansion coefficients with locally measured magnetic (or/and electric) fields. When estimating the G2L transfer functions, the source is commonly expanded into spherical harmonics (SH). In this paper, we explore an alternative parametrization of the source based on a principal component analysis (PCA) of the Fourier transformed output from the physics-based Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM). Specifically, we investigate whether magnetic fields computed in the realistic three-dimensional conductivity model of Earth excited by the PCA-based source agree better with observatory data than those computed in the same model but induced by the SH-based source. Using PCA to capture the source current compared to SH parametrization, we find that agreement with the observatory data is better during magnetically disturbed times and at shorter periods. Vice versa, it is poorer during magnetically quiet times and at longer periods.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zenhäusern, Géraldine
Kuvshinov, Alexey
Guzavina, Martina
Maute, Astrid
Publisher UCAR/NCAR - Library
Publication Date 2021-12-25T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:29:26.528019
Metadata Record Identifier edu.ucar.opensky::articles:24513
Metadata Language eng; USA
Suggested Citation Zenhäusern, Géraldine, Kuvshinov, Alexey, Guzavina, Martina, Maute, Astrid. (2021). Towards probing Earth’s upper mantle with daily magnetic field variations: Exploring a physics-based parametrization of the source. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gt5rhg. Accessed 22 June 2025.

Harvest Source