Prediction of diverse Boreal Summer Intraseasonal Oscillation in the GFDL SPEAR model

Boreal summer intraseasonal oscillation (BSISO) is a primary source of predictability for summertime weather and climate on the subseasonal-to-seasonal (S2S) time scale. Using the GFDL SPEAR S2S prediction system, we evaluate the BSISO prediction skills based on 20-yr (2000-19) hindcast experiments with initializations from May to October. It is revealed that the overall BSISO prediction skill using all hindcasts reaches out to 22 days as measured by BSISO indices before the bivariate anomalous correlation coefficient (ACC) drops below 0.5. Results also show that the northeastwardpropagating canonical BSISO (CB) event has a higher prediction skill than the northward dipole BSISO (DB) event (28 vs 23 days). This is attributed to CB's more periodic nature, resulting in its longer persistence, while DB events are more episodic accompanied by a rapid demise after reaching maximum enhanced convection over the equatorial Indian Ocean. From a forecaster's perspective, a precursory strong Kelvin wave component in the equatorial western Pacific signifies the subsequent development of a CB event, which is likely more predictable. Investigation of individual CB events shows a large interevent spread in terms of their prediction skills. For CB, the events with weaker and fluctuating amplitude during their lifetime have relatively lower prediction skills likely linked to their weaker convection-circulation coupling. Interestingly, the prediction skills of individual CB events tend to be relatively higher and less scattered during late summer (August-October) than those in early summer (May-July), suggestive of the seasonal modulation on the evolution and predictability of BSISO.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2024 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Xiang, Baoqiang
Wang, B.
Chen, G.
Delworth, T. L.
Publisher UCAR/NCAR - Library
Publication Date 2024-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:03:06.912228
Metadata Record Identifier edu.ucar.opensky::articles:27083
Metadata Language eng; USA
Suggested Citation Xiang, Baoqiang, Wang, B., Chen, G., Delworth, T. L.. (2024). Prediction of diverse Boreal Summer Intraseasonal Oscillation in the GFDL SPEAR model. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d75x2f3g. Accessed 11 August 2025.

Harvest Source