Dynamically forced increase of tropical upwelling in the lower stratosphere

Drivers of upwelling in the tropical lower stratosphere are investigated using the E39C-A chemistry-climate model. The climatological annual cycle in upwelling and its wave forcing are compared to the interim ECMWF Re-Analysis (ERA-Interim). The strength in tropical upwelling and its annual cycle can be largely explained by local resolved wave forcing. The climatological mean forcing is due to both stationary planetaryscale waves that originate in the tropics and extratropical transient synoptic-scale waves that are refracted equatorward. Increases in atmospheric greenhouse gas (GHG) concentrations to 2050 force a year-round positive trend in tropical upwelling, which maximizes in the lowermost stratosphere. Tropical ascent is balanced by downwelling between 20° and 40°. Strengthening of tropical upwelling can be explained by stronger local forcing by resolved wave flux convergence, which is driven in turn by processes initiated by increases in tropical sea surface temperatures (SSTs). Higher tropical SSTs cause a strengthening of the subtropical jets and modification of deep convection affecting latent heat release. While the former can modify wave propagation and dissipation, the latter affects tropical wave generation. The dominant mechanism leading to enhanced vertical wave propagation into the lower stratosphere is an upward shift of the easterly shear zone due to the strengthening and upward shift of the subtropical jets

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Garny, Hella
Dameris, Martin
Randel, William
Bodeker, Greg
Deckert, Rudolf
Publisher UCAR/NCAR - Library
Publication Date 2011-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:51:45.230992
Metadata Record Identifier edu.ucar.opensky::articles:10585
Metadata Language eng; USA
Suggested Citation Garny, Hella, Dameris, Martin, Randel, William, Bodeker, Greg, Deckert, Rudolf. (2011). Dynamically forced increase of tropical upwelling in the lower stratosphere. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xd1253. Accessed 20 June 2025.

Harvest Source