Supercell thunderstorms in complex topography - how mountain valleys with lakes can increase occurrence frequency

This study investigates the effects of lakes in mountainous terrain on the evolution of supercell thunderstorms. With a newly developed radar-based, mesocyclone-detection algorithm, a recent study has characterized the occurrence and evolution of supercell thunderstorms in the Swiss Alpine region. That study highlights the influence of orography on both storm intensity and occurrence frequency. To disentangle the different influential factors, an idealized modeling framework is established here using the mesoscale model CM1. The modeling scenarios are based on a high-CAPE environment with uni-directional shear, where a warm bubble serves to initiate the convection. Mimicking the environment of the southern Prealps in central Europe, scenarios with a high mountain ridge, valleys, and lakes are explored. The effect on the supercells of the slopes, high-altitude terrain, and moisture sources emphasizes the highly localized nature of terrain effects, leading to a het-erogeneous intensity life cycle with transitory enhancement and weakening of the supercell. The dynamic and thermodynamic impact of mountain valleys with lakes increases the range of atmospheric conditions that supports supercellular development through horizontal vorticity production, increased storm relative helicity, and higher moisture content. This influence results in a systematic location dependence of the frequency, intensity, and lifetime of supercells, as also found in observations.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Book #1 : Multi-scale transport and exchange processes in the atmosphere over mountains

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Feldmann, M.
Rotunno, Richard
Germann, U.
Berne, A.
Publisher UCAR/NCAR - Library
Publication Date 2024-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:04:27.602495
Metadata Record Identifier edu.ucar.opensky::articles:27037
Metadata Language eng; USA
Suggested Citation Feldmann, M., Rotunno, Richard, Germann, U., Berne, A.. (2024). Supercell thunderstorms in complex topography - how mountain valleys with lakes can increase occurrence frequency. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7h41wkx. Accessed 11 August 2025.

Harvest Source