Quantifying the efficiency of stratospheric aerosol geoengineering at different altitudes

Stratospheric aerosol injection (SAI) of reflective sulfate aerosols has been proposed to temporarily reduce the impacts of global warming. In this study, we compare two SAI simulations which inject at different altitudes to provide the same amount of cooling, finding that lower-altitude SAI requires 64% more injection. SAI at higher altitudes cools the surface more efficiently per unit injection than lower-altitude SAI through two primary mechanisms: the longer lifetimes of SO2 and SO4 at higher altitudes, and the water vapor feedback, in which lower-altitude SAI causes more heating in the tropical cold point tropopause region, thereby increasing water vapor transport into the stratosphere and trapping more terrestrial infrared radiation that offsets some of the direct aerosol-induced cooling. We isolate these individual mechanisms and find that the contribution of lifetime effects to differences in cooling efficiency is approximately five to six times larger than the contribution of the water vapor feedback.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Lee, W. R.
Visioni, Daniele
Bednarz, E. M.
MacMartin, D. G.
Kravitz, B.
Tilmes, Simone
Publisher UCAR/NCAR - Library
Publication Date 2023-07-28T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:16:03.459342
Metadata Record Identifier edu.ucar.opensky::articles:26514
Metadata Language eng; USA
Suggested Citation Lee, W. R., Visioni, Daniele, Bednarz, E. M., MacMartin, D. G., Kravitz, B., Tilmes, Simone. (2023). Quantifying the efficiency of stratospheric aerosol geoengineering at different altitudes. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7z60t35. Accessed 11 August 2025.

Harvest Source