Quantifying climate feedbacks using radiative kernels

The extent to which the climate will change due to an external forcing depends largely on radiative feedbacks, which act to amplify or damp the surface temperature response. There are a variety of issues that complicate the analysis of radiative feedbacks in global climate models, resulting in some confusion regarding their strengths and distributions. In this paper, the authors present a method for quantifying climate feedbacks based on "radiative kernels" that describe the differential response of the top-of-atmosphere radiative fluxes to incremental changes in the feedback variables. The use of radiative kernels enables one to decompose the feedback into one factor that depends on the radiative transfer algorithm and the unperturbed climate state and a second factor that arises from the climate response of the feedback variables. Such decomposition facilitates an understanding of the spatial characteristics of the feedbacks and the causes of intermodel differences. This technique provides a simple and accurate way to compare feedbacks across different models using a consistent methodology. Cloud feedbacks cannot be evaluated directly from a cloud radiative kernel because of strong nonlinearities, but they can be estimated from the change in cloud forcing and the difference between the full-sky and clear-sky kernels. The authors construct maps to illustrate the regional structure of the feedbacks and compare results obtained using three different model kernels to demonstrate the robustness of the methodology. The results confirm that models typically generate globally averaged cloud feedbacks that are substantially positive or near neutral, unlike the change in cloud forcing itself, which is as often negative as positive.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Soden, B.
Held, I.
Colman, R.
Shell, Karen
Kiehl, Jeffrey
Shields, Christine A.
Publisher UCAR/NCAR - Library
Publication Date 2008-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:57:18.755247
Metadata Record Identifier edu.ucar.opensky::articles:6798
Metadata Language eng; USA
Suggested Citation Soden, B., Held, I., Colman, R., Shell, Karen, Kiehl, Jeffrey, Shields, Christine A.. (2008). Quantifying climate feedbacks using radiative kernels. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d71r6qrv. Accessed 12 August 2025.

Harvest Source