Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei

This study presents measurements of size and time-resolved particle diameter growth rates for freshly nucleated particles down to 1 nm geometric diameter. Novel data analysis methods were developed, de-coupling for the first time the size and time-dependence of particle growth rates by fitting the aerosol general dynamic equation to size distributions obtained at an instant in time. Size distributions of freshly nucleated total aerosol (neutral and charged) were measured during two intensive measurement campaigns in different environments (Atlanta, GA and Boulder, CO) using a recently developed electrical mobility spectrometer with a diethylene glycol-based ultrafine condensation particle counter as the particle detector. One new particle formation (NPF) event from each campaign was analyzed in detail. At a given instant in time during the NPF event, size-resolved growth rates were obtained directly from measured size distributions and were found to increase approximately linearly with particle size from ~1 to 3 nm geometric diameter, increasing from 5.5 ± 0.8 to 7.6 ± 0.6 nm h⁻¹ in Atlanta (13:00) and from 5.6 ± 2 to 27 ± 5 nm h⁻¹ in Boulder (13:00). The resulting growth rate enhancement Γ, defined as the ratio of the observed growth rate to the growth rate due to the condensation of sulfuric acid only, was found to increase approximately linearly with size from ~1 to 3 nm geometric diameter. For the presented NPF events, values for Γ had lower limits that approached ~1 at 1.2 nm geometric diameter in Atlanta and ~3 at 0.8 nm geometric diameter in Boulder, and had upper limits that reached 8.3 at 4.1 nm geometric diameter in Atlanta and 25 at 2.7 nm geometric diameter in Boulder. Nucleated particle survival probability calculations comparing the effects of constant and size-dependent growth indicate that neglecting the strong dependence of growth rate on size from 1 to 3 nm observed in this study could lead to a significant overestimation of CCN survival probability.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kuang, C.
Chen, M.
Zhao, Jun
Smith, James
McMurry, P.
Wang, J.
Publisher UCAR/NCAR - Library
Publication Date 2012-04-12T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:59:27.173884
Metadata Record Identifier edu.ucar.opensky::articles:12023
Metadata Language eng; USA
Suggested Citation Kuang, C., Chen, M., Zhao, Jun, Smith, James, McMurry, P., Wang, J.. (2012). Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7w37x02. Accessed 22 June 2025.

Harvest Source