The modeling of the North Equatorial Countercurrent in the Community Earth System Model and its oceanic component

The North Equatorial Countercurrent (NECC) simulated by a coupled ocean-atmosphere model and its oceanic component have been investigated and compared against oceanographic observations. Coupled model simulations using the Community Earth System Model version 2 are compared against ocean-ice simulations forced by the second phase of the Coordinated Ocean-ice Reference Experiments (CORE) data set. The modeled circulation biases behave differently to the west of and to the east of 120 degrees W: the CORE-forced ocean model largely underestimates the NECC transport to the west and the coupled model underestimates it to the east. Further analysis suggests that the surface wind stress and its curl is the most important forcing term for correctly simulating the NECC in both models. West of 120 degrees W, the NECC biases in the ocean model are attributed to the southward movement of the maximum easterly trade winds in the Northern Hemisphere and the associated wind stress curl (WSC) pattern; east of 120 degrees W, the NECC biases in the coupled model are attributed to the weak northward cross-equatorial winds and southwestward gap winds, which lead to a weak WSC gradient at the latitude of NECC. Further analysis confirms that the WSC biases comes mainly from the zonal wind bias, which may in turn relate to the protocol of CORE-II of adjusting reanalysis winds toward satellite data, which include the relative wind effect.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution NonCommercial-NoDerivatives 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sun, Zhikuo
Liu, Hailong
Lin, Pengfei
Tseng, Yu-heng
Small, R. Justin
Bryan, Frank O.
Publisher UCAR/NCAR - Library
Publication Date 2019-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:17:57.478634
Metadata Record Identifier edu.ucar.opensky::articles:22399
Metadata Language eng; USA
Suggested Citation Sun, Zhikuo, Liu, Hailong, Lin, Pengfei, Tseng, Yu-heng, Small, R. Justin, Bryan, Frank O.. (2019). The modeling of the North Equatorial Countercurrent in the Community Earth System Model and its oceanic component. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7s75kcj. Accessed 15 June 2025.

Harvest Source