Identification

Title

Assimilation of global satellite leaf area estimates reduces modeled global carbon uptake and energy loss by terrestrial ecosystems

Abstract

Carbon, water and energy exchange between the land and atmosphere controls how ecosystems either accelerate or ameliorate the effect of climate change. However, evaluating improvements to processes controlling carbon cycling, water use and energy exchange in global land surface models (LSMs) remains challenging in part because of persistent model errors in estimating leaf area. Here we evaluate the changes in global carbon, water and energy exchange brought about when a LSM prognostic estimates of leaf area are made consistent with estimates from satellites. This approach achieves two aims; first to quantify the effect of ignoring errors in leaf area index (LAI) on land-atmosphere fluxes and second, to evaluate how closely this LSM replicates fluxes with and without an LAI constraint. We implemented an ensemble Kalman filter with spatiotemporal adaptive inflation to more closely match community land model (CLM5.0) estimates of leaf area to those from the Global Inventory Modeling and Mapping Studies leaf area index (LAI3g) product. We then evaluate the model's estimates of gross primary productivity (GPP) and latent heat flux (LE) against well established global estimates of these fluxes. We find that the model is biased high by 27% relative to the LAI3g product. Moreover, the effect of bias in LAI is substantial for GPP (18%) and LE (6%) and likely to confound efforts to refine processes controlling these fluxes. This data assimilation approach serves as a method to evaluate the efficacy of refinements to flux processes until the processes controlling the dynamics of LAI are better resolved in LSMs.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72f7s63

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-08-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:00:47.768609

Metadata language

eng; USA