Identification

Title

An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance

Abstract

This study investigates a long-duration mesoscale system with extremely heavy rainfall over southwest Taiwan during the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). This mesoscale convective system develops offshore and stays quasi-stationary over the upstream ocean and southwest coast of Taiwan. New convection keeps developing upstream offshore but decays or dies after moving into the island, dropping the heaviest rain over the upstream ocean and coastal regions. Warm, moist, unstable conditions and a low-level jet (LLJ) are found only over the upstream ocean, while the island of Taiwan is under the control of a weak cold pool. The LLJ is lifted upward at the boundary between the cold pool and LLJ. Most convective clusters supporting the long-lived rainy mesoscale system are initiated and develop along that boundary. The initiation and maintenance is thought to be a "back-building--quasi-stationary" process. The cold pool forms from previous persistent precipitation with a temperature depression of 2°-4°C in the lowest 500 m, while the high terrain in Taiwan is thought to trap the cold pool from spreading or moving. As a result, the orography of Taiwan is "extended" to the upstream ocean and plays an indirect effect on the long-duration mesoscale system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qr4xv4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:23:20.388263

Metadata language

eng; USA