Identification

Title

Quantifying Poynting flux in the Quiet Sun photosphere

Abstract

Poynting flux is the flux of magnetic energy, which is responsible for chromospheric and coronal heating in the solar atmosphere. It is defined as a cross product of the electric and magnetic fields, and in ideal MHD conditions it can be expressed in terms of the magnetic field and plasma velocity. Poynting flux has been computed for active regions and plages, but estimating it in the quiet Sun (QS) remains challenging due to resolution effects and polarimetric noise. However, with the upcoming DKIST capabilities, such estimations will become more feasible than ever before. Here, we study QS Poynting flux in SUNRISE/IMaX observations and MURaM simulations. We explore two methods for inferring transverse velocities from observations—FLCT and a neural network–based method DeepVel—and show DeepVel to be the more suitable method in the context of small-scale QS flows. We investigate the effect of azimuthal ambiguity on Poynting flux estimates, and we describe a new method for azimuth disambiguation. Finally, we use two methods for obtaining the electric field. The first method relies on an idealized Ohm's law, whereas the second is a state-of-the-art inductive electric field inversion method PDFI_SS. We compare the resulting Poynting flux values with theoretical estimates for chromospheric and coronal energy losses and find that some of the Poynting flux estimates are sufficient to match the losses. Using MURaM simulations, we show that photospheric Poynting fluxes vary significantly with optical depth, and that there is an observational bias that results in underestimated Poynting fluxes due to an unaccounted shear term contribution.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7862mj2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:55.808974

Metadata language

eng; USA