Identification

Title

Evaluation of the weak constraint data assimilation approach for estimating turbulent heat fluxes at six sites

Abstract

A number of studies have estimated turbulent heat fluxes by assimilating sequences of land surface temperature (LST) observations into the strong constraint-variational data assimilation (SC-VDA) approaches. The SC-VDA approaches do not account for the structural model errors and uncertainties in the micrometeorological variables. In contrast to the SC-VDA approaches, the WC-VDA approach (the so-called weak constraint-VDA) accounts for the effects of structural and model errors by adding a model error term. In this study, the WC-VDA approach is tested at six study sites with different climatic and vegetative conditions. Its performance is also compared with that of SC-VDA at the six study sites. The results show that the WC-VDA produces 10.16% and 10.15% lower root mean square errors (RMSEs) for sensible and latent heat flux estimates compared with the SC-VDA approach. The model error term can capture errors in the turbulent heat flux estimates due to errors in LST and micrometeorological measurements, as well as structural model errors, and does not allow those errors to adversely affect the turbulent heat flux estimates. The findings also indicate that the estimated model error term varies reasonably well, so as to capture the misfit between predicted and observed net radiation in different hydrological and vegetative conditions. Finally, synthetically generated positive (negative) noises are added to the hydrological input variables (e.g., LST, air temperature, air humidity, incoming solar radiation, and wind speed) to examine whether the WC-VDA approach can capture those errors. It was found that the WC-VDA approach accounts for the errors in the input data and reduces their effect on the turbulent heat flux estimates.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ng4tp8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-12-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:46.081361

Metadata language

eng; USA