Identification

Title

An analog technique to improve storm wind speed prediction using a dual NWP model approach

Abstract

This study presents a new implementation of the analog ensemble method (AnEn) to improve the prediction of wind speed for 146 storms that have impacted the northeast United States in the period 2005-16. The AnEn approach builds an ensemble by using a set of past observations that correspond to the best analogs of numerical weather prediction (NWP). Unlike previous studies, dual-predictor combinations are used to generate AnEn members, which include wind speed, wind direction, and 2-m temperature, simulated by two state-of-the-science atmospheric models [the Weather Research and Forecasting (WRF) Model and the Regional Atmospheric Modeling System-Integrated Community Limited Area Modeling System (RAMS-ICLAMS)]. Bias correction is also applied to each analog to gain additional benefits in predicting wind speed. Both AnEn and the bias-corrected analog ensemble (BCAnEn) are tested with a weighting strategy, which optimizes the predictor combination with root-mean-square error (RMSE) minimization. A leave-one-out cross validation is implemented, that is, each storm is predicted using the remaining 145 as the training dataset, with modeled and observed values over 80 stations in the northeast United States. The results show improvements of 9%-42% and 1%-29% with respect to original WRF and ICLAMS simulations, as measured by the RMSE of individual storms. Moreover, for two high-impact tropical storms (Irene and Sandy), BCAnEn significantly reduces the error of raw prediction (average RMSE reduction of 22% for Irene and 26% for Sandy). The AnEn and BCAnEn techniques demonstrate their potential to combine different NWP models to improve storm wind speed prediction, compared to the use of a single NWP.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7xg9v3f

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:55.628218

Metadata language

eng; USA