Identification

Title

Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability

Abstract

A technique of near-real-time monitoring and prediction of various modes of coherent synoptic to intraseasonal zonally propagating tropical variability is developed. It involves Fourier filtering of a daily updated global dataset for the specific zonal wavenumbers and frequencies of each of the phenomena of interest. The filtered fields obtained for times before the end of the dataset may be used for monitoring, while the filtered fields obtained for times after the end point may be used as a forecast. Tests of the technique, using satellite-observed outgoing longwave radiation (OLR) data, reveal its skill for monitoring. For prediction, it demonstrates good skill for the Madden-Julian oscillation (MJO), and detectable skill for other convectively coupled equatorial modes, although the decaying amplitude of the predictions with time is a characteristic that users need to be aware of. The skill for the MJO OLR field appears to be equally as good as that obtained by the recent empirical MJO forecast methods developed by Waliser et al., and Lo and Hendon, with a useful forecast out to about 15-20 days. Unlike the previously developed methods, however, the current monitoring and prediction technique is extended to other defined modes of large-scale coherent zonally propagating tropical variability. These other modes are those that appear as equatorial wavelike oscillations in the OLR. For them, the skill shown by this empirical technique, although considerably less than that obtained for the MJO, is still deemed to be high enough for the technique to be sometimes useful, especially when compared to that of a medium-range global numerical weather prediction (NWP) model.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7td9xwz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2001-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2001 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:10:56.893000

Metadata language

eng; USA