Identification

Title

Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory

Abstract

Climate model simulations of the PETM (Paleocene-Eocene Thermal Maximum) warming have mainly focused on replicating the global thermal response through greenhouse forcing, i.e. CO2, at levels compatible with observations. Comparatively less effort has gone into assessing the skill of models to replicate the response of the hydrologic cycle to the warming, particularly on regional scales. Here we have assembled proxy records of regional precipitation, focusing on the Mid-Atlantic Coasts of North America (New Jersey) and Europe (Spain) to test the response of the hydrologic system to greenhouse gas forcing of the magnitude estimated for the PETM (i.e., 2x). Given evidence that the PETM initiated during a maximum in eccentricity, this includes the response under neutral and extreme orbital configurations. Modeled results show excellent agreement with observations in Northern Spain, with a significant increase in both mean annual and extreme precipitation resulting from increased CO2 levels under a neutral orbit. The Mid Atlantic Coast simulations agree with observations showing increases in both overall and extreme precipitation as a result of CO2 increases. In particular, the development of sustained atmospheric rivers might be significantly contributing to the extremes of the eastern Atlantic, whereas extratropical cyclones are likely contributing to the extremes in the western Atlantic. With an eccentric orbit that maximizes insolation during boreal summer, there is a suppression of extreme precipitation events in the eastern Atlantic and an amplification in the western Atlantic, which may account for observations in the relative timing of the sedimentary response to the carbon isotope excursion associated with the PETM.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qz2fbx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:09.255792

Metadata language

eng; USA