Identification

Title

Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere

Abstract

Whole Atmosphere Community Climate Model (WACCM) simulations are used to investigate solar and lunar tide changes in the mesosphere and lower thermosphere (MLT) that occur in response to sudden stratosphere warmings (SSWs). The average tidal response is demonstrated based on 23 moderate to strong Northern Hemisphere SSWs. The migrating semidiurnal lunar tide is enhanced globally during SSWs, with the largest enhancements (∼60–70%) occurring at mid to high latitudes in the Northern Hemisphere. Enhancements in the migrating solar semidiurnal tide (SW2) also occur up to an altitude of 120 km. Above this altitude, the SW2 decreases in response to SSWs. The SW2 enhancements are 40-50%, making them smaller in a relative sense than the enhancements in the migrating semidiurnal lunar tide. Changes in nonmigrating solar tides are, on average, generally small and the only nonmigrating tides that exhibit changes greater than 20% are the diurnal tide with zonal wave number 0 (D0) and the westward propagating semidiurnal tide with zonal wave number 1 (SW1). D0 is decreased by ~20-30% at low latitudes, while SW1 exhibits a similar magnitude enhancement at mid to high latitudes in both hemispheres. The tidal changes are attributed to a combination of changes in the zonal mean zonal winds, changes in ozone forcing of the SW2, and nonlinear planetary wave-tide interactions. We further investigate the influence of the lunar tide enhancements on generating perturbations in the low latitude ionosphere during SSWs by using the WACCM-X thermosphere to drive an ionosphere-electrodynamics model. For both solar maximum and solar minimum simulations, the changes in the equatorial vertical plasma drift velocity are similar to observations when the lunar tide is included in the simulations. However, when the lunar tide is removed from the simulations, the low latitude ionosphere response to SSWs is unclear and the characteristic behavior of the low latitude ionosphere perturbations that is seen in observations is no longer apparent. Our results thus indicate the importance of variability in the lunar tide during SSWs, especially for the coupling between SSWs and perturbations in the low latitude ionosphere.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72r3sdc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-08-24T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:50:24.486876

Metadata language

eng; USA