Identification

Title

Bias correction and application of labeled smartphone pressure data for evaluating the best track of landfalling tropical cyclones

Abstract

Smartphone pressure observations have demonstrated significant potential to complement traditional pressure monitoring. However, challenges remain in correcting biases and further leveraging these observations for practical applications. In this study, we used tropical cyclones (TCs) Lekima in 2019, Hagupit in 2020 and In-fa in 2021 as examples to conduct bias correction on labeled smartphone pressure data from the Moji Weather app. We propose a quality control procedure utilizing random forest machine learning models. By applying this quality control approach to the selected TCs, we discovered that the performance of the method for labeled data significantly surpassed that for unlabeled data developed in a previous study, reducing the mean absolute error from 3.105 to 0.904 hPa. The bias-corrected smartphone data were then supplemented with weather station data for sea-level-pressure analyses and compared with the analyses that used only weather station data. The significantly higher spatial resolution and broader coverage of the smartphone data led to notable differences between the two analysis fields. Additionally, we compared the minimum sea-level pressure of TCs derived from smartphone data, weather station observations and the best-track dataset from the Shanghai Typhoon Institute (STI) of the China Meteorological Administration. We found that the best track published by STI consistently underestimated the minimum sea-level pressure, with a median difference of 0.51 hPa in the three TC cases.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7891b7c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-02-14T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:54:25.027300

Metadata language

eng; USA