Identification

Title

The radiative effect on cloud microphysics from the Arctic to the Tropics

Abstract

Cloud representation is one of the largest uncertainties in the current weather and climate models. In this article, the observations and modeling of the radiative effect on (cloud) microphysics (REM) from the Arctic to the tropics are overviewed, providing a new direction to meet the challenge of cloud representation. REM deals with the radiation-induced temperature difference between cloud particles and air. It leads to two common phenomena observed at the surface-dew and frost-and impacts clouds aloft significantly, which is noticed via the wide occurrence of horizontally oriented ice crystals (HOICs). However, REM has been overlooked by all of the operational weather and climate models. Based on the bin model of REM and the global distribution of radiative cooling/warming, the observations of REM from several platforms (e.g., aircrafts, field campaigns, and satellites) are coordinated in this article, yielding a global picture on REM. As a result, the picture is compatible with the global distribution of HOICs and other ice crystal characteristics obtained from various clouds on the globe, such as diamond dust (or clear-sky precipitation) in the Arctic, subvisual cirrus clouds in the tropical tropopause layer, and other cirrus clouds from the low to high latitudes. In addition, ice crystals possess relatively strong REM compared to liquid drops because their aspect ratio is usually not one. The global picture on REM can be used by the weather and climate modelers to diagnose their cloud representation biases. It can also be used to improve the atmospheric ice retrieval algorithm from satellite observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7hq43tj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:56.039801

Metadata language

eng; USA