Identification

Title

Geographical and seasonal variations of gravity wave activities in the upper mesosphere measured by space-borne imaging of molecular oxygen nightglow

Abstract

Geographical and seasonal variations of gravity wave events in the upper mesosphere were investigated using the nightglow imaging data obtained by the Visible and near-Infrared Spectral Imager (VISI) on the Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere (IMAP) onboard the International Space Station (ISS). The nadir-imaging data of the O2(0-0) atmospheric band (762 nm) with the typical emission peak around 95 km altitude was used to investigate small-scale waves (horizontal wavelengths less than similar to 200 km) on a global scale. To detect gravity wave events, the variance of high-pass filtered nightglow images within a local 100 km radius was evaluated, with a threshold set at three times the standard deviation from the average variance of the background level. A data screening algorithm that evaluates the variance of upwelling contamination light emission was also introduced to remove contaminated data. Applying the variance filter and data screening algorithm to a nearly 3-year data set, from November 2012 to August 2015, occurrence maps of wave events for four seasons were derived. The occurrence maps show a higher frequency of wave events in winter high latitudes (> 40 degrees N/S), considerably attributed to gravity wave activity associated with the polar night jet. Hot spots were observed near orographic sources in winter high latitudes, including the eastern part of North America, Europe, and the southern Andes. In the summer hemisphere, hot spots were detected at mid-to-high latitudes such as North America, Europe, and the eastern side of the Eurasian continent, and at equatorial latitudes just above the intertropical convection zone (ITCZ). They are likely gravity waves from deep convection that arise from mid-latitude summertime thunderstorms and the ITCZ, respectively. During the equinox seasons, hot spots were detected near convective sources such as the Amazon Rainforest, Congo Rainforest, and the Indochina peninsula.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7wd44rc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-05-07T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:02:13.340153

Metadata language

eng; USA