Identification

Title

An analysis of gravity wave spectral characteristics in moist baroclinic jet-front systems

Abstract

This study investigates gravity wave spectral characteristics based on high-resolution mesoscale simulations of idealized moist baroclinic jet-front systems with varying degrees of convective instability, with the intent of improving nonorographic gravity wave parameterizations. In all experiments, there is a clear dominance of negative vertical flux of zonal momentum. The westward momentum flux is distributed around the estimated ground-based baroclinic wave phase velocity along the zonal direction, while strong moist runs indicate a dipole structure pattern with stronger westward momentum flux centers at slower phase velocity and weaker eastward momentum flux centers at faster phase velocity. The spectral properties of short-scale wave components (50-200 km) generally differ from those of medium-scale ones (200–600 km). Compared to the medium-scale wave components, the momentum flux phase speed spectra for the short-scale ones appear to be more sensitive to the increasing initial moisture content. The spectral behavior in horizontal wavenumber space or phase velocity space is highly anisotropic, with a noticeable preference along the jet direction, except for the short-scale components in strong moist runs. It is confirmed that the dry gravity wave source (i.e., upper jet and/or surface front) generates a relatively narrow and less symmetrical power spectrum (dominated by negative momentum flux) centered around lower phase velocity and horizontal wavenumber, whereas the moist gravity wave source (i.e., moist convection) generates a broader and more symmetrical power spectrum, with a broader range of phase speeds and horizontal wavenumbers. This study also shows that the properties of gravity wave momentum flux depend on the location relative to the baroclinic jet.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ks6t5s

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:00:13.931930

Metadata language

eng; USA