Identification

Title

The FastEddy® resident‐GPU accelerated large‐eddy simulation framework: Model formulation, dynamical‐core validation and performance benchmarks

Abstract

This paper introduces a new large-eddy simulation model, FastEddy (R), purpose built for leveraging the accelerated and more power-efficient computing capacity of graphics processing units (GPUs) toward adopting microscale turbulence-resolving atmospheric boundary layer simulations into future numerical weather prediction activities. Here a basis for future endeavors with the FastEddy (R) model is provided by describing the model dry dynamics formulation and investigating several validation scenarios that establish a baseline of model predictive skill for canonical neutral, convective, and stable boundary layer regimes, along with boundary layer flow over heterogeneous terrain. The current FastEddy (R) GPU performance and efficiency gains versus similarly formulated, state-of-the-art CPU-based models is determined through scaling tests as 1 GPU to 256 CPU cores. At this ratio of GPUs to CPU cores, FastEddy (R) achieves 6 times faster prediction rate than commensurate CPU models under equivalent power consumption. Alternatively, FastEddy (R) uses 8 times less power at this ratio under equivalent CPU/GPU prediction rate. The accelerated performance and efficiency gains of the FastEddy (R) model permit more broad application of large-eddy simulation to emerging atmospheric boundary layer research topics through substantial reduction of computational resource requirements and increase in model prediction rate.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kd2278

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-11-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:07:51.052777

Metadata language

eng; USA