Identification

Title

Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks

Abstract

Accurately estimating tropical cyclone (TC) intensity is one of the most critical steps in TC forecasting and disaster warning/management. For over 40 years, the Dvorak technique (and several improved versions) has been applied for estimating TC intensity by forecasters worldwide. However, the operational Dvorak techniques primarily used in various agencies have several deficiencies, such as inherent subjectivity leading to inconsistent intensity estimates within various basins. This collaborative study between meteorologists and data scientists has developed a deep-learning model using satellite imagery to estimate TC intensity. The conventional convolutional neural network (CNN), which is a mature technology for object classification, requires several modifications when being used for directly estimating TC intensity (a regression task). Compared to the Dvorak technique, the CNN model proposed here is objective and consistent among various basins; it has been trained with satellite infrared brightness temperature and microwave rain-rate data from 1097 global TCs during 2003-14 and optimized with data from 188 TCs during 2015-16. This paper also introduces an upgraded version that further improves the accuracy by using additional TC information (i.e., basin, day of year, local time, longitude, and latitude) and applying a postsmoothing procedure. An independent testing dataset of 94 global TCs during 2017 has been used to evaluate the model performance. A root-mean-square intensity difference of 8.39 kt (1 kt approximate to 0.51 m s(-1)) is achieved relative to the best track intensities. For a subset of 482 samples analyzed with reconnaissance observations, a root-mean-square intensity difference of 8.79 kt is achieved.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rv0rs0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:26:54.109244

Metadata language

eng; USA