Integrating cloud processes in the Community Atmosphere Model, Version 5
This paper provides a description of the integrated representation for the cloud processes in the Community Atmosphere Model, version 5 (CAM5). CAM5 cloud parameterizations add the following unique characteristics to previous versions: 1) a cloud macrophysical structure with horizontally nonoverlapped deep cumulus, shallow cumulus, and stratus in each grid layer, where each of which has its own cloud fraction, and mass and number concentrations for cloud liquid droplets and ice crystals; 2) stratus–radiation–turbulence interactions that allow CAM5 to simulate marine stratocumulus solely from grid-mean relative humidity without relying on a stability-based empirical formula; 3) prognostic treatment of the number concentrations of stratus liquid droplets and ice crystals, with activated aerosols and detrained in-cumulus condensates as the main sources and with evaporation, sedimentation, and precipitation of stratus condensate as the main sinks; and 4) radiatively active cumulus and snow. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, unrealistically empty or highly dense stratus is avoided in CAM5. Because of the activation of the prognostic aerosols and the parameterizations of the radiation and stratiform precipitation production as a function of the cloud droplet size, CAM5 simulates various aerosol indirect effects as well as the direct effects: that is, aerosols affect both the radiation budget and the hydrological cycle. Detailed analysis of various simulations indicates that CAM5 improves upon CAM3/CAM4 in global performance as well as in physical formulation. However, several problems are also identified in CAM5, which can be attributed to deficient regional tuning, inconsistency between various physics parameterizations, and incomplete treatment of physics. Efforts are continuing to further improve CAM5.
document
http://n2t.net/ark:/85065/d7zk5hpr
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-09-15T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:21:34.735022