On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics
Polarimetric radar measurements are used to retrieve drop size distributions (DSD) in subtropical thunderstorms. Retrievals are made with the single-moment exponential drop size model of Marshall and Palmer driven by radar reflectivity measurements and with a two-parameter constrained-gamma drop size model that utilizes reflectivity and differential reflectivity. Results are compared with disdrometer observations. Retrievals with the constrained-gamma DSD model gave better representation of total drop concentration, liquid water content, and drop median volume diameter and better described their natural variability. The Marshall–Palmer DSD model, with a fixed intercept parameter, tended to underestimate the total drop concentration in storm cores and to overestimate significantly the concentration in stratiform regions. Rainwater contents in strong convection were underestimated by a factor of 2–3, and drop median volume diameters in stratiform rain were underestimated by 0.5 mm. To determine possible DSD model impacts on numerical forecasts, evaporation and accretion rates were computed using Kessler-type parameterizations. Rates based on the Marshall–Palmer DSD model were lower by a factor of 2–3 in strong convection and were higher by about a factor of 2 in stratiform rain than those based on the constrained-gamma model. The study demonstrates the potential of polarimetric radar measurements for improving the understanding of precipitation processes and microphysics parameterization in numerical forecast models.
document
http://n2t.net/ark:/85065/d7h41rmq
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2006-02-01T00:00:00Z
Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:42:15.192441