Identification

Title

Quantifying scavenging efficiencies of different aerosol species and size-resolved volume concentrations in tropical convective clouds over the West Pacific

Abstract

In-cloud aerosol scavenging remains a large source of model uncertainty, affecting capabilities to capture the aerosol lifetime and impacts on air quality and climate. While past work quantified aerosol scavenging efficiencies (SEs) in midlatitude mixed-phase deep convection, SEs are less well known for shallower convection. We used aircraft data over the tropical west Pacific to calculate SEs for three marine cumuli of different top heights (3–7 km MSL) using a simple entrainment model and measurements of the cloud outflow and nearby clear air. Across cases, efficient scavenging was observed for sulfate (>86%) and black carbon (70%–80%), while organic aerosols (53%–60%) and nitrate (61.5%) were moderately scavenged. Ammonium had a wide SE range (53%–87%). SEs of aerosol volume concentration showed near-total removal of aerosols with diameters greater than 100 nm (>92%) and inefficient removal for aerosols with diameters less than 100 nm (30%–50%), associated with the preferential activation and removal of larger particles. Mass-based SEs did not differ substantially between tropical cumuli and midlatitude deep convection, attributed to the negligible mass activated at higher supersaturations. The efficient scavenging of black carbon (BC) can be explained by an enhanced hygroscopic fraction of BC based on model results from the Community Earth System Model, version 2 (CESM2), Community Atmosphere Model with Chemistry, suggesting the internal mixing of BC with more soluble species during long-range transport through the marine atmosphere. The estimates of BC SEs provide direct evidence of substantial BC removal in convection as inferred by previous work and should motivate improvements in chemical transport models.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7mg7tvb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2024 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:54:41.617243

Metadata language

eng; USA