Identification

Title

Sensitivity of simulated fire-generated circulations to fuel characteristics during large wildfires

Abstract

Coupled fire-atmosphere models often struggle to simulate important fire processes like fire generated flows, deep flaming fronts, extreme updrafts, and stratospheric smoke injection during large wildfires. This study uses the coupled fire-atmosphere model, WRF-Fire, to examine the sensitivities of some of these phenomena to the modeled total fuel load and its consumption. Specifically, the 2020 Bear Fire and 2021 Caldor Fire in California's Sierra Nevada are simulated using three fuel loading scenarios (1X, 4X, and 8X LANDFIRE derived surface fuel), while controlling the fire rate of spread using observations. This approach helps isolate the fuel loading and consumption needed to produce fire-generated winds and plume rise comparable to radar observations of these events. Increasing fuel loads and corresponding fire residence time in WRF-Fire leads to deep plumes in excess of 10 km, strong vertical velocities of 40-45 m s-1, and combustion fronts several kilometers in width (in the along wind direction). These results indicate that LANDFIRE-based surface fuel loads in WRF-Fire likely under-represent fuel loading, having significant implications for simulating landscape-scale wildfire processes, associated impacts on spread, and fire-atmosphere feedbacks.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7qr5290

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-03-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:03:19.609157

Metadata language

eng; USA