The amplifying influence of increased ocean stratification on a future year without a summer
In 1816, the coldest summer of the past two centuries was observed over northeastern North America and western Europe. This so-called Year Without a Summer (YWAS) has been widely attributed to the 1815 eruption of Indonesia's Mt. Tambora and was concurrent with agricultural failures and famines worldwide. To understand the potential impacts of a similar future eruption, a thorough physical understanding of the YWAS is crucial. Climate model simulations of both the 1815 Tambora eruption and a hypothetical analogous future eruption are examined, the latter occurring in 2085 assuming a business-as-usual climate scenario. Here, we show that the 1815 eruption drove strong responses in both the ocean and cryo-sphere that were fundamental to driving the YWAS. Through modulation of ocean stratification and near-surface winds, global warming contributes to an amplified surface climate response. Limitations in using major volcanic eruptions as a constraint on cloud feedbacks are also found.
document
http://n2t.net/ark:/85065/d7x92dvj
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-12-31T00:00:00Z
Copyright 2017 Author(s). Published under license by the Nature Publishing Group.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:18:27.679195