Forecast-based decision support for San Francisco International Airport: A NextGen prototype system that improves operations during ummer stratus season
During summer, marine stratus encroaches into the approach to San Francisco International Airport (SFO) bringing low ceilings. Low ceilings restrict landings and result in a high number of arrival delays, thus impacting the National Air Space (NAS). These delays are managed by implementation of ground delay programs (GDPs), which hold traffic on the ground at origination airports in anticipation of insufficient arrival capacity at SFO. In an effort to reduce delays and improve both airport and NAS efficiency, the Federal Aviation Administration (FAA) funded a research effort begun in 1995 to develop an objective decision support system to aid forecasters in the prediction of stratus clearing times. By improving forecasts at this major airport, the scope and duration of ground and airborne holds can be reduced. The Marine Stratus Forecast System (MSFS) issues forecasts both deterministically and probabilistically. Following transition to NWS operations in 2004, the system continued to provide reliable forecasts but showed no significant improvement in delay reduction. Changes to the FAA GDP issuance procedures in 2008 allowed them to utilize the improved forecasts, leading to quantifiable reductions in ground and airborne holds for SFO equating to dollars saved. To further reduce delays, a refined statistically based model, the Ground Delay Parameters Selection Model (GPSM) for selecting an optimal ground delay strategy has been developed, utilizing the available archive of objective MSFS probabilistic forecasts and accompanying traffic flow data. This effort represents one of the first systematic attempts to integrate objective probabilistic weather information into the air traffic flow decision process, which is a cornerstone element of the FAA's visionary NextGen program.
document
https://n2t.org/ark:/85065/d7h70gkm
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-10-01T00:00:00Z
Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-15T21:32:26.296815