Identification

Title

Precipitation and cloud structures of intense rain during the 2013 great Colorado flood

Abstract

Radar and disdrometer observations collected during the 2013 Great Colorado Flood are used to diagnose the spatial and vertical structure of clouds and precipitation during episodes of intense rainfall. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, during 2200-0400 UTC 11-13 September. The strongest rainfall occurred along lower parts of the Colorado Front Range at >1.6 km MSL and on the northern side of the Palmer Divide. The vertical structure of clouds and horizontal distribution of rainfall are strongly linked to upslope flow and low-level forcing, which resulted in surface convergence. During times of weak forcing, shallow convection produced rain at and below the melting layer through collision-coalescence and, to a lesser extent, riming. A mesoscale circulation interacting with the local terrain produced convective rainfall with high cloud tops that favored ice crystal production. During moderate forcing with cloud tops slightly exceeding the 0°C level, both cold- and warm-phase microphysical processes dominated. Less rain with weaker rainfall rates was observed over the higher-elevation stations compared to the lower-elevation stations across the foothills.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71z45wb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:03:25.489373

Metadata language

eng; USA