Identification

Title

Lower-tropospheric influences on the timing and intensity of afternoon severe convection over modest terrain in a convection-allowing ensemble

Abstract

A 50-member convection-allowing ensemble is used to examine effects of daytime PBL evolution and ambient flow interacting with modest terrain features on convection initiation (CI) in the lee of the Rocky Mountains. The examined case (4 June 2015) has isolated supercell storms that initiate during mid- to late afternoon along the northern portion of the Palmer Lake Divide, which is a ~0.5-km-deep zonally oriented terrain feature in east-central Colorado that extends eastward from the Rocky Mountains. To diagnose factors most crucial to storm development, two 10-member subensembles are constructed from the full 50-member ensemble. One subensemble (STRONG) has storm locations with mature storm intensities, and average timing of CI similar to that observed. The other subensemble (WEAK) has fewer storms, with generally weaker intensity, and delayed CI. Environmental composites constructed from these subensembles reveal a stronger surface horizontal convergence zone and moisture gradient in STRONG, resulting from 2–3.5 m s−1 stronger southerly winds on the south flank of the convergence zone. The stronger southerlies result from accelerated PBL growth and momentum mixing in the presence of strong low-to-mid-tropospheric vertical shear, which is facilitated by reduced above-PBL static stability in the composite STRONG initial condition. Stronger time-averaged low-to-mid-tropospheric upward motion coincides with the surface convergence zone in STRONG, and individual CI locations occur at the northeastern edge of the composite vertical motion maximum. Trajectory analysis with STRONG members confirms that the CI locations are consistent with large vertical displacements, and corresponding relative humidity increases leading to decreases in convective inhibition, as the southerly airstream ascends across the convergence zone.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rn3c1n

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:18.107048

Metadata language

eng; USA