Identification

Title

Tropical cyclones and equatorial waves in a convection-permitting aquaplanet simulation with off-equatorial SST maximum

Abstract

Tropical weather phenomena-including tropical cyclones (TCs) and equatorial waves-are influenced by planetary-to-convective-scale processes; yet, existing data sets and tools can only capture a subset of those processes. This study introduces a convection-permitting aquaplanet simulation that can be used as a laboratory to study TCs, equatorial waves, and their interactions. The simulation was produced with the Model for Prediction Across Scales-Atmosphere (MPAS-A) using a variable resolution mesh with convection-permitting resolution (i.e., 3-km cell spacing) between 10 degrees S and 30 degrees N. The underlying sea-surface temperature is given by a zonally symmetric profile with a peak at 10 degrees N, which allows for the formation of TCs. A comparison between the simulation and satellite, reanalysis, and airborne dropsonde data is presented to determine the realism of the simulated phenomena. The simulation captures a realistic TC intensity distribution, including major hurricanes, but their lifetime maximum intensities may be limited by the stronger vertical wind shear in the simulation compared to the observed tropical Pacific region. The simulation also captures convectively coupled equatorial waves, including Kelvin waves and easterly waves. Despite the idealization of the aquaplanet setup, the simulated three-dimensional structure of both groups of waves is consistent with their observed structure as deduced from satellite and reanalysis data. Easterly waves, however, have peak rotation and meridional winds at a slightly higher altitude than in the reanalysis. Future studies may use this simulation to understand how convectively coupled equatorial waves influence the multi-scale processes leading to tropical cyclogenesis.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7765kdp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:09.123569

Metadata language

eng; USA