Identification

Title

Quasi-global machine learning-based soil moisture estimates at high spatio-temporal scales using CYGNSS and SMAP observations

Abstract

Global soil moisture mapping at high spatial and temporal resolution is important for various meteorological, hydrological, and agricultural applications. Recent research shows that the land surface reflection in the forward direction of Global Navigation Satellite System (GNSS) signals at L-band can convey high-resolution land surface information, including surface soil moisture. However, these signals are often affected by complex land surface characteristics and the bistatic nature of the GNSS-Reflectometry (GNSS-R) technique, resulting in a nonlinear relationship between the signals and surface soil moisture. In this work, a machine learning (ML) approach is used to map quasi-global soil moisture using bistatic reflectance observations acquired from the recently launched Cyclone GNSS (CYGNSS) mission. Specifically, several land surface parameters are obtained from remote sensing products and integrated with Soil Moisture Active Passive (SMAP) enhanced soil moisture retrievals to facilitate daily quasi-global CYGNSS soil moisture mapping at 9 km. Based on cross-validation against SMAP data, the ML algorithm is shown to be suitable for retrieving soil moisture from CYGNSS. Median values of unbiased root-mean-square-difference for the quasi-global coverage or regions with vegetation water content less than 5 kg/m(2) are 0.0395 cm3/cm(3 )and 0.0320 cm(3)/cm(3), respectively. Likewise, via independent evaluation against more than 100 in-situ sites, the algorithm is shown to have an unbiased root-mean-square-error of 0.0543 cm(3)/cm(3). CYGNSS-based retrievals contain similar spatial variability as SMAP across different seasons. Moreover, through a robust triple collocation technique, the accuracy of CYGNSS soil moisture is relatively high over moderately vegetated regions with correlations ranging from 0.4 to 0.8. Based on these validation results, we argue that derived CYGNSS soil moisture estimates can supplement current global soil moisture databases and provide more frequent retrievals at 9 km.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7k0780c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:37:11.714453

Metadata language

eng; USA