The polar summer tropopause inversion layer
Temperature profiles in polar latitudes during summer reveal a strong and persistent inversion layer associated with the polar summer tropopause. This inversion layer is characterized by a temperature increase of ~8 K in the first 2-3 km above the tropopause and is observed throughout summer polar latitudes in both hemispheres. Radiosonde and GPS radio occultation temperature observations are used to document characteristics of the inversion layer, including its seasonal variability and modulation by synoptic meteorological systems (cyclones and anticyclones). Previous analyses have suggested a radiative mechanism for formation and maintenance of tropopause inversions, related to water vapor and ozone near the tropopause. Fixed dynamical heating (FDH) calculations are used herein to investigate this behavior in polar regions, based on observed seasonally varying profiles of water vapor (from satellite measurements) and ozone (from ozonesondes). Water vapor exhibits a strong seasonal cycle throughout the troposphere and lowest stratosphere, with a pronounced summer maximum, which is primarily a result of the seasonally varying tropospheric temperatures. The FDH calculations suggest that enhanced summer water vapor leads to strong radiative cooling in a narrow layer near the tropopause, so that the radiative influence of water vapor provides a primary mechanism for the summer inversion layer.
document
http://n2t.net/ark:/85065/d7zk5h34
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-08-01T00:00:00Z
Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:51:54.264266