Identification

Title

Improved representation of horizontal variability and turbulence in mesoscale simulations of an extended cold-air pool event

Abstract

Cold-air pools (CAPs), or stable atmospheric boundary layers that form within topographic basins, are associated with poor air quality, hazardous weather, and low wind energy output. Accurate prediction of CAP dynamics presents a challenge for mesoscale forecast models in part because CAPs occur in regions of complex terrain, where traditional turbulence parameterizations may not be appropriate. This study examines the effects of the planetary boundary layer (PBL) scheme and horizontal diffusion treatment on CAP prediction in the Weather Research and Forecasting (WRF) Model. Model runs with a one-dimensional (1D) PBL scheme and Smagorinsky-like horizontal diffusion are compared with runs that use a new three-dimensional (3D) PBL scheme to calculate turbulent fluxes. Simulations are completed in a nested configuration with 3-km/750-m horizontal grid spacing over a 10-day case study in the Columbia River basin, and results are compared with observations from the Second Wind Forecast Improvement Project. Using event-averaged error metrics, potential temperature and wind speed errors are shown to decrease both with increased horizontal grid resolution and with improved treatment of horizontal diffusion over steep terrain. The 3D PBL scheme further reduces errors relative to a standard 1D PBL approach. Error reduction is accentuated during CAP erosion, when turbulent mixing plays a more dominant role in the dynamics. Last, the 3D PBL scheme is shown to reduce near-surface overestimates of turbulence kinetic energy during the CAP event. The sensitivity of turbulence predictions to the master length-scale formulation in the 3D PBL parameterization is also explored.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7mk6hnk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:02:37.726093

Metadata language

eng; USA