Identification

Title

An assessment of how domain experts evaluate Machine Learning in operational meteorology

Abstract

As an increasing number of machine learning (ML) products enter the research-to-operations (R2O) pipeline, researchers have anecdotally noted a perceived hesitancy by operational forecasters to adopt this relatively new technology. One explanation often cited in the literature is that this perceived hesitancy derives from the complex and opaque nature of ML methods. Because modern ML models are trained to solve tasks by optimizing a potentially complex combination of mathematical weights, thresholds, and nonlinear cost functions, it can be difficult to determine how these models reach a solution from their given input. However, it remains unclear to what degree a model’s transparency may influence a forecaster’s decision to use that model or if that impact differs between ML and more traditional (i.e., non-ML) methods. To address this question, a survey was offered to forecaster and researcher participants attending the 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (SFE) with questions about how participants subjectively perceive and compare machine learning products to more traditionally derived products. Results from this study revealed few differences in how participants evaluated machine learning products compared to other types of guidance. However, comparing the responses between operational forecasters, researchers, and academics exposed notable differences in what factors the three groups considered to be most important for determining the operational success of a new forecast product. These results support the need for increased collaboration between the operational and research communities.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d76q22nb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2025 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:54:04.954489

Metadata language

eng; USA