Identification

Title

Effects of snow water storage on hydrologic partitioning across the mountainous, western United States

Abstract

In the montane western United States, where the majority of downstream water resources are derived from snowmelt, a warming climate threatens the timing and amount of future water availability. It is expected that the fraction of precipitation falling as snow will continue decreasing and the timing of snowmelt will continue shifting earlier in the year with unknown impacts on partitioning between evapotranspiration and streamflow. To assess this, we employ a Snow Storage Index (SSI) to represent the annual temporal phase difference between daily precipitation and daily modeled surface water inputs (SWI, the sum of rainfall and snowmelt), weighted by the respective amounts. We coupled the SSI metric with a Budyko-based framework to determine the effect of snow water storage on relative hydrologic partitioning across snow-influenced watersheds in the western U.S. Greater snow water storage was positively correlated with greater hydrologic partitioning to streamflow, particularly in the North Cascades/Cascades (r(2): 0.62), Blue Mountains (r(2): 0.56), Canadian Rockies (r(2): 0.55), Idaho Batholith, (r(2): 0.48), and Columbia Mountains/Northern Rockies (r(2): 0.45). The weekly SWI:P ratio was an equally strong predictor for hydrologic partitioning, particularly in mid-spring (e.g., March/April) in the same mountainous areas (r(2): 0.62-0.74, across the same eco-regions). The retention of snow water storage and subsequent release of stored water in summer months resulted in increased hydrologic partitioning to streamflow. If SSI decreases with future warming, the volume of water partitioned streamflow will decrease non-uniformly across the western U.S. with substantial implications for ecosystems and agricultural, industrial, and domestic water supplies.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7kd22zp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:15:53.902596

Metadata language

eng; USA