Identification

Title

Leaf trait plasticity alters competitive ability and functioning of simulated tropical trees in response to elevated carbon dioxide

Abstract

The response of tropical ecosystems to elevated carbon dioxide (CO2) remains a critical uncertainty in projections of future climate. Here, we investigate how leaf trait plasticity in response to elevated CO2 alters projections of tropical forest competitive dynamics and functioning. We use vegetation demographic model simulations to quantify how plasticity in leaf mass per area and leaf carbon to nitrogen ratio alter the responses of carbon uptake, evapotranspiration, and competitive ability to a doubling of CO2 in a tropical forest. Observationally constrained leaf trait plasticity in response to CO2 fertilization reduces the degree to which tropical tree carbon uptake is affected by a doubling of CO2 (up to -14.7% as compared to a case with no plasticity; 95% confidence interval [CI95%] -14.4 to -15.0). It also diminishes evapotranspiration (up to -7.0%, CI95% -6.4 to -7.7), and lowers competitive ability in comparison to a tree with no plasticity. Consideration of leaf trait plasticity to elevated CO2 lowers tropical ecosystem carbon uptake and evapotranspirative cooling in the absence of changes in plant-type abundance. However, "plastic" responses to high CO2 which maintain higher levels of plant productivity, many of which fall outside of the observed range of response, are potentially more competitively advantageous, thus, including changes in plant type abundance may mitigate these decreases in ecosystem functioning. Models that explicitly represent competition between plants with alternative leaf trait plasticity in response to elevated CO2 are needed to capture these influences on tropical forest functioning and large-scale climate.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rr22m6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:14:52.110248

Metadata language

eng; USA