Identification

Title

Using Regionalized Air Quality Model Performance and Bayesian Maximum Entropy data fusion to map global surface ozone concentration

Abstract

Estimates of ground-level ozone concentrations have been improved through data fusion of observations and atmospheric chemistry models. Our previous global ozone estimates for the Global Burden of Disease study corrected for bias uniformly across continents and then corrected near monitoring stations using the Bayesian Maximum Entropy (BME) framework for data fusion. Here, we use the Regionalized Air Quality Model Performance (RAMP) framework to correct model bias over a much larger spatial range than BME can, accounting for the spatial inhomogeneity of bias and nonlinearity as a function of modeled ozone. RAMP bias correction is applied to a composite of 9 global chemistry-climate models, based on the nearest set of monitors. These estimates are then fused with observations using BME, which matches observations at measurement stations, with the influence of observations declining with distance in space and time. We create global ozone maps for each year from 1990 to 2017 at fine spatial resolution. RAMP is shown to create unrealistic discontinuities due to the spatial clustering of ozone monitors, which we overcome by applying a weighting for RAMP based on the number of monitors nearby. Incorporating RAMP before BME has little effect on model performance near stations, but strongly increases R2 by 0.15 at locations farther from stations, shown through a checkerboard cross-validation. Corrections to estimates differ based on location in space and time, confirming heterogeneity. We quantify the likelihood of exceeding selected ozone levels, finding that parts of the Middle East, India, and China are most likely to exceed 55 parts per billion (ppb) in 2017. About 96% of the global population was exposed to ozone levels above the World Health Organization guideline of 60 mg m-3 (30 ppb) in 2017. Our annual fine-resolution ozone estimates may be useful for several applications including epidemiology and assessments of impacts on health, agriculture, and ecosystems.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7q81j46

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-13T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:43.731693

Metadata language

eng; USA