An objective methodology for configuring and down-selecting an NWP Ensemble for low-level wind prediction
Ensembles of numerical weather prediction (NWP) model predictions are used for a variety of forecasting applications. Such ensembles quantify the uncertainty of the prediction because the spread in the ensemble predictions is correlated to forecast uncertainty. For atmospheric transport and dispersion and wind energy applications in particular, the NWP ensemble spread should accurately represent uncertainty in the low-level mean wind. To adequately sample the probability density function (PDF) of the forecast atmospheric state, it is necessary to account for several sources of uncertainty. Limited computational resources constrain the size of ensembles, so choices must be made about which members to include. No known objective methodology exists to guide users in choosing which combinations of physics parameterizations to include in an NWP ensemble, however. This study presents such a methodology. The authors build an NWP ensemble using the Advanced Research Weather Research and Forecasting Model (ARW-WRF). This 24-member ensemble varies physics parameterizations for 18 randomly selected 48-h forecast periods in boreal summer 2009. Verification focuses on 2-m temperature and 10-m wind components at forecast lead times from 12 to 48 h. Various statistical guidance methods are employed for down-selection, calibration, and verification of the ensemble forecasts. The ensemble down-selection is accomplished with principal component analysis. The ensemble PDF is then statistically dressed, or calibrated, using Bayesian model averaging. The postprocessing techniques presented here result in a recommended down-selected ensemble that is about half the size of the original ensemble yet produces similar forecast performance, and still includes critical diversity in several types of physics schemes.
document
https://n2t.org/ark:/85065/d7zw1n75
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-07-01T00:00:00Z
Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-15T21:34:01.169688