Identification

Title

Improvement of mountain-wave turbulence forecasts in NOAA’s Rapid Refresh (RAP) Model with the hybrid vertical coordinate system

Abstract

Spurious mountain-wave features have been reported as false alarms of light-or-stronger numerical weather prediction (NWP)-based cruise level turbulence forecasts especially over the western mountainous region of North America. To reduce this problem, a hybrid sigma-pressure vertical coordinate system was implemented in NOAA's operational Rapid Refresh model, version 4 (RAPv4), which has been running in parallel with the conventional terrain-following coordinate system of RAP version 3 (RAPv3). Direct comparison of vertical velocity |w| fields from the RAPv4 and RAPv3 models shows that the new RAPv4 model significantly reduces small-scale spurious vertical velocities induced by the conventional terrain-following coordinate system in the RAPv3. For aircraft-scale turbulence forecasts, |w| and |w|/Richardson number (|w|/Ri) derived from both the RAPv4 and RAPv3 models are converted into energy dissipation rate (EDR) estimates. Then, those EDR-scaled indices are evaluated using more than 1.2 million in situ EDR turbulence reports from commercial aircraft for 4 months (September-December 2017). Scores of the area under receiver operating characteristic curves for the |w|- and |w|/Ri-based EDR forecasts from the RAPv4 are 0.69 and 0.83, which is statistically significantly improved over the RAPv3 of 0.63 and 0.77, respectively. The new RAPv4 became operational on 12 July 2018 and provides better guidance for operational turbulence forecasting over North America.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7bc42nw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:20:25.029374

Metadata language

eng; USA