Identification

Title

A numerical investigation of hurricane Florence‐induced compound flooding in the Cape Fear Estuary using a dynamically coupled hydrological‐ocean model

Abstract

Hurricane-induced compound flooding is a combined result of multiple processes, including overland runoff, precipitation, and storm surge. This study presents a dynamical coupling method applied at the boundary of a processes-based hydrological model (the hydrological modeling extension package of the Weather Research and Forecasting model) and the two-dimensional Regional Ocean Modeling System on the platform of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System. The coupled model was adapted to the Cape Fear River Basin and adjacent coastal ocean in North Carolina, United States, which suffered severe losses due to the compound flood induced by Hurricane Florence in 2018. The model's robustness was evaluated via comparison against observed water levels in the watershed, estuary, and along the coast. With a series of sensitivity experiments, the contributions from different processes to the water level variations in the estuary were untangled and quantified. Based on the temporal evolution of wind, water flux, water level, and water-level gradient, compound flooding in the estuary was categorized into four stages: (I) swelling, (II) local-wind-dominated, (III) transition, and (IV) overland-runoff-dominated. A nonlinear effect was identified between overland runoff and water level in the estuary, which indicated the estuary could serve as a buffer for surges from the ocean side by reducing the maximum surge height. Water budget analysis indicated that water in the estuary was flushed 10 times by overland runoff within 23 days after Florence's landfall.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7q81j0d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:30.632517

Metadata language

eng; USA