Identification

Title

Matrix approach to accelerate spin-up of CLM5

Abstract

Numerical models have been developed to investigate and understand responses of biogeochemical cycle to global changes. Steady state, when a system is in dynamic equilibrium, is generally required to initialize these model simulations. However, the spin-up process that is used to achieve steady state pose a great burden to computational resources, limiting the efficiency of global modeling analysis on biogeochemical cycles. This study introduces a new Semi-Analytical Spin-Up (SASU) to tackle this grand challenge. We applied SASU to Community Land Model version 5 and examined its computational efficiency and accuracy. At the Brazil site, SASU is computationally 7 times more efficient than (or saved up to 86% computational cost in comparison with) the traditional native dynamics (ND) spin-up to reach the same steady state. Globally, SASU is computationally 8 times more efficient than the accelerated decomposition spin-up and 50 times more efficient than ND. In summary, SASU achieves the highest computational efficiency for spin-up on site and globally in comparison with other spin-up methods. It is generalizable to wide biogeochemical models and thus makes computationally costly studies (e.g., parameter perturbation ensemble analysis and data assimilation) possible for a better understanding of biogeochemical cycle under climate change.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72b932r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:15:57.971916

Metadata language

eng; USA