Identification

Title

Parametric controls on vegetation responses to biogeochemical forcing in the CLM5

Abstract

Future projections of land carbon uptake in Earth System Models are affected by land surface model responses to both CO2 and nitrogen fertilization. The Community Land Model, Version 5 (CLM5), contains a suite of modifications to carbon and nitrogen cycle representation. Globally, the CLM5 has a larger CO2 response and smaller nitrogen response than its predecessors. To improve our understanding of the controls over the fertilization responses of the new model, we assess sensitivity to eight parameters pertinent to the cycling of carbon and nitrogen by vegetation, both under present-day conditions and with CO2 and nitrogen fertilization. The impact of fertilization varies with both model parameters and with the balance of limiting factors (water, temperature, nutrients, and light) in the pre-fertilization model state. The model parameters that impact the pre-fertilization state are in general not the same as those that control fertilization responses, meaning that goodness of fit to present-day conditions does not necessarily imply a constraint on future transient projections. Where pre-fertilization state has low leaf area, fertilization-induced increases in leaf production amplify the model response to the initial fertilization via further increases in photosynthesis. Model responses to CO2 and N fertilization are strongly impacted by how much plant communities can increase their rates of nitrogen fixation and also directly affected by costs of N extraction from soil and stoichiometric flexibility. Illustration of how parametric flexibility impacts model outputs should help inform the interpretation of carbon-climate feedbacks estimated by in fully coupled Earth system model simulations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7sb48w6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:25:46.160207

Metadata language

eng; USA